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RepreentationS of Children's Addition and Subtraction Concepts

N-)Ftract

The counting unit types, counting perceptual, motor, verbal, and

abstract unit items have been identified vith children's schemes

for adding and subtracting The observations on eight first- and

second-graders involved in a three-week teachirg'experimentt

provided four representations of children's addition concepts, and

six representations of their subtraction concepts; One or more

specific schemes have been identified with each representation;

The schemes hive been classified according to developmental

levels, with the children capable of using the more advanced unit

types, constructing the higher level schemes. Children who

constructed higher level schemes also solved all kinds of addition

and sUbtraction problems, which involved larger numbers;

Children's use of their schemes reflected the awareness of the

difficulty of a problem, and their basic understanding of adding

and subtracting.



Representations of Children's Addition and Subtraction Concepts

Benjamin A. Eshun

University of Georgia

Despite the long history of educational reforms the

education community is still unclear as to what we mean by

educating children in schools, even when we restrict our

concern to a subject area like mathematics. What are the givens

the school setting? Is it the child or a predetermined scope

and sequence of a mathematics curriculum? Let us quickly cast

our mind into a classroom where a teacher is helping a child,

Hendry a six-year old, to solve "6 + 3". The teacher is

frw-trated because despite all her efforts and encouragement

little Hendry can simply not utter "6-700" and give "9" as

the answer. Hendry has to use blocks, count out six blocks and

then count three more blocks in a separate location. Finally

tic makes a single heap of all the counted blocks and

sequentially touches the blocks while uttering "1,2,3

The teacher's intention is to teach Hendry to count on from "6"

but the latter can only count perceptual items (blocks;

fingers), and has yet to construct unit items from number word

utterances.

The .above episode supports the view that teachers need to

be fully aware of the child's processes for representing

addition and: subtraction of numbers, as well as the unit items

the child is capable of creating while counting. It is this

knowledge that would enable the teacher to provide. appropriate
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opportunities that could help to bring out the most prominent

mathematical knowledge in the child an ideal goal which

Kireenko (1959) has called "pedagogical optimism" (p. 19).

_Purpose

The primary objective of the study reported in this paper

is to provide an experimental model of children's

representations of addition and subtraction concepts viewed as

constructed schemes; The study will also investigate the

possible indicdtors of developmental itineraries of adding and

subtracting schemes that are identified in the experimental

model; In particular; we will investigate how children who

possess different counting schemes differ in their addition

concepts and subtraction concepts; and how the types of

problems children solve correlate with their addition concepts

and subtraction concepts;

Rationale

On every occasion that the child attempts to solve or

correctly solves an addition or a subtraction problem; the

Child reveals something about her knowledge of the arithmetical

operation in particular and her knowledge of number in general.

it rs not that the child creates or constructs a piece of

knowledge according to the rules and structure of the

mathematics she is starting to learn; rather the child

re- present's the mathematical operation (an internalized

activity in the Piagetian sense) in whatever way she can; This

global re-presentation is a reflection of the way the child; at

that moment in her development, organizes her experience.



The Piagetian prin,.iple is taken that the child

riocessarily has to construct her own representations of reality

r,;en if, at some later point f development, the child'S

subjectve reality does become or is expected t-) be compatible

With the reality of the social group in which she operates.

Steffe, von Clasersfeld, Richards, & Cobb (1983) have

demonstrated that the concept of unit, that forms the basis of

all numerical operations and arithmetic skills is developed out

of the child's own constructions which pass through a sequence

of stages. The counting types of Steffe et al; (1983) provide a

firm foundation from which to explore the steps children take

when constructing addition and subtraction concepts;

Addition and subtraction constitute a major part of the

elementary school mathematics curriculum, especially in the

first and second grades; The importance of the need for

teachers to provide appropriate opportunities for children to

construct and use addition and subtraction concepts cannot be

overemphasized; This need has been a recurrent theme in

recommendations made by researchers investigating children's

concepts or skills for solving addition and subtraction

problems. Brownell (19.28) addressed this need in the following.

recommendation:

teachers must keep fully informed_ concerning the
stages of development of the pupils' by means of
continuous study ... of the procedures -and processes
which the pupils employ in dealing with numbers (p. 143).

More than 20 years after Brownell's recommendation, Ilg and

Ames (1951) found the need to make a similar recommendation,

Not'only is it important to know more about each
individual child's developmental rate in regard
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to mathematics, but also we should know more about
each individual child's particular processes,
number systems, ;:. and devices which he uses in
arriving at answers to arithmetic problems (p. 26).

Most first- or second-grade teachers will confirm that

they have observed significant individual differences regarding

the processes and the strategies their pupils use to solve

addition and subtraction problems, despite the common

instruction the teachers provide. Appropriate instruction,

which takes the children's differences into consideration

requires knowledge of the addition and subtraction concepts

children do 3onstruct and how they construct them. Researchers

(Brownell, 1928; Carpenter, 1983b; Carpenter & Moser, 1981,

1982; Davydov & Andronov, 1981; Groen & Resnick, 1977; Houlihan

& Ginsburg, 1981; Ilg & Ames, 1951; Siegler & Robinson, 1982;

Steffe, Thompson, & Richards, 1982; Steffe, von Glasersfeld,

Richar06, & Cobb, 1983; Suppes & Grcienp 1967; Woods, Resnick, &

Groen, 1975) have attempted to map the processes children use

to solve addition and subtraction problems for more than half a

century. Despite the well-documented strategies that children

use to solve these problems, Carpenter and Moser (1981) have

rightly pointed out that there is "a great deal that is yet

unknown about how additions and subtraction concepts and skills.

.are acquired" (p. 62);

Providing models that;are based onminute analyses

observations of children's constructive activities in the

context of solving problems is ope viable approach to

elucidating children's acquisition of adding and subtracting

schemes..Mo two children may be exactly the same with respect
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to their intellectual development. While there always may be

some significant differences in the construction of adding and

subtracting schemes by any two children, a teacher's knowledge

of the ways and means of the acquisition of these schemes may

greatly facilitate her ability to foster the adaptations made

by particular children.

The teacher with the goal of fostering adaptation should

be generating hypotheses about her children's actions,

interpreting their behavior, and evaluating these hypotheses to

provide evi-lence and support for her future decisions; The

teacher Ghould have the specific objective of applying,

immediately, her knowledge and the interpretation of her

observations to assist the children she is teaching; The

significance of the study is enhanced by the benefit a teacher

can derive from the models provided in her diagnosis and

direction of children's construction of addition and

subtraction concepts; The inclusion of children's counting unit

types in the representation of addition- and subtraction

concepts in the study opens up another dimension for research

into how children come to acquire and construct these concepts.

_The Child

Psychologists and educators have long recognized the child

as the center of interest (Knight, 1930, p. 3) in education.

Some will go further and claim the childOas also the most



important. component of euucation (Gattegno, 1970 p.

Knight (1930a) rightly points out that it is inadequate to base

teaching solely on the "interest and felt needs" of the child;

BLit he favors strict adherence to the organized "curriculum

laid down before the child enters school" (p. 6); Hence, the

currietilUM becomes the meet important component and not the

Child as suggested by Gattegno (1970). Focusing on the child

ShbUld result in organizing the curriculum not beforehand; but

according to the mental powers of the child; Gattegno (1970)

calls these powers the "functionings of children" (p. 7); To

have a functioning is to have the "know-how" to function in a

particular way; Some important examples of these ninetibhingS

for learning mathematics are the power of extraction, the pot4et

to make transformations, the power to make abstradtiOnS0 and

the power of imagery;

Eno edge

Focusing on the Mental powers of the child lead8 to the

primary concern of synchronizing teaching with children's

mathematical thinking. Thus, to be successful, an approach to

teaching should lead to the generation of knowledge by the

students. The most important question is, "how does the child

come to haV6 particular knowledge"? The answer we give to this

question depends on our view of the rature of knowledge;

Ih th;e decade ft-OM :lie 1970 to 198G the hopes the "New

math" had kin-died for the teaching and learning of mathematics

disappeared- iThe mathematics education community which, in the

sixties appeared to know "where it was going" gradually

realized that children were not performing any better in



mathematics than the children of previous decades; In facti

many children left the'study of mathematics as soon as possible

(Nurdi 1982); Complaceny had to give way to a period of

"groping for a clearer focus and sense of direction" (Hill,

1983, p. I); The failure of the New Math movement was

ironically due partly to the apparent success claimed by;the

mathematics educators involved in identifying the type of

knowledge children needed to acquire. As von Glasersfeld put

it:

Educatc)rs were concerned with getting knowledge
into the heads of their studentsi_and educational
researchers were concerned with finding_better
ways of doing it. There was theni, little if any
uncertainty as to what the knowledge was that_
students should acquirei and there was no_doubt
at all thati in one way or another; knowledge
could be transferred from_a_teacher_to a+-student.
The only question wasi which might be -the best
way to implement that transfer (p. 42) .

This approach to teaching is based on the assumption that the

teacher possesses knowledge which she imparts to the student;

Gattegno (1970) characterizes this approach as the

"subordination of learning to teaching" (p. 5)i and illustrates

it as in Figure 1 (p. 3). In this scenario; knowledge is

supposed exist independently of the student and can be

passively transferred to him or her by the teacher; The student

is supposed to need only memory in order to receive knowledge

(Gattegnoi 1970; pp. 3-4);;

Insert Figure about here



von Glasersfeld (1983) provides a sketchy but adequate

historical review of the traditional conception of knowledge;

He concluded that a dilema arises when we accept the

traditional conception of knowledge "that requires a match or

-ear-r-e-sp-On-dren-c-e between (our) cognitive structures and what

these structures are supposed to represent" (p. 48) , because in

this scenario, "truth" becomes the perfect match; that is, a

flawless representation. He argues that, since we are logically

incapable of having a "God's eye view" (Putnam, 1981) of the

real world and its presumed representation, there is no way out

of the dilema (p. 48); However, he suggests we can resolve our

experiential problems by adopting the kind of knowledge that

nits human observations; From this perspective, the world we

live in is always and necessarily the world as we conceptualize

it. But we still cannot make "facts" as we like; For as von

GlasersfelC put it:

They are viable facts as long as they -do not clash
with experience, as long as they _remain tenable in
the sense that they continue to do' what we expect
them to do (ID; 51)

If we take this latter view of knowledge then our approach

to teaching and learning should differ from that illustrated in

Figure 1. For in this (second) scenario, the student will have

to organize. what the teacher says to fit his or her own

knowledge. Knowledge, then; is constructed by the student as

opposed to being transferred ready-made by the teacher. This

approach to teaching and learning is consistent with what

Gattegno (1970) calls "the subordination of teaching to

learnirg" (p. 14), which he illustrates as in Figure 2 (p. 14);

li



Insert Fiqure 2 ahent here

It should be emphasized, however, that the communication

between the student and L:,e-teacher is crucial even though the

child has to construct its o4n knowledge. We shall see the need

for this communication later Qhen we consider the 'teacher's

f61-e in the child's learning situation.

Theories of Learning

Since the turn of the century psychologists have

propounded a number of theories and explicated how these

theories could optimize the learning of mathematics (especially

arithmetic) . The connectionism of Thorndike (1922) attracted

many disciples. Knight (1930b) based his treatment of teaching

methods on Thorndike's connectionism and provided extensive

treatment of drily on the basic facts; The Gestalt psychology

developed by Kohler (1929) and Wertheimer (1923 / 1938)

endeavored to explicate more complex 'ear:sing in problem

solving and understanding of mathematical stuctures than the

connectionism of Thorndike (1922) could explain. Katona (1940 /

1967) extended the principles of Gestalt psychology to

explicate the distinction between "senseless" (rote) and

"meaningful" (understanding) learning. An important issue in

learning theories is the transfer of knowledge gained in

learning One: task to another. Gagne (1962; 1970) initiated the

cumulative learning theory in which he explicates how complex

12



skills can be analyzed into ordered subskills, or learning

hierarchies;

Piaget (1964) has not provided any explicit theory of

Inarning that can be applied directly for instruction. His

views are that development of knowledge explains learning

rather than the widely held opinion that development isa sum

of discrete learning experiences (p. 8). Piaget (1970b) has

identified=three categories and meanings of experience that

contribute to cognitive development; First, there is simple

exercise in which the child acts on objects without extracting
. .

any knowledge from them. But the exercise may, if exploratory

in nature, provide new exogenous information as well as

consolidate the child's activity. Second, there is physical

experience which enables the child to extract information from

the .objects themselves using simple (empirical) abstraction;

Here the child discovers new properties of the objects while it

disregards others (e.g. discover weight while disregarding

color). Third., there is logico-mathematical experience which is

an important component in cognitive development and allows the

child to discover new deductive instruments. This experience

enables the child to derive knowledge based on his actions on

objects rather than from their physical properties. Piaget

(1970b) emphasizes that knowledge acquired through experience

has two poles: "acquisition derived from the objects and

constructive activities of the subject" (p. 721). Piaget (1964)

cautions that while it is possible to obtain learning through

physical.experience by external reidforcement, learning that

involves the construction of a logical structure cannot be

s



obtained by external reinforcement (p. 16); Piaget (1964)

points out that such learning may be possible only if the

subject (learner) already possesses the necessary and

supportive simpler, more elementary logical- mathematical

structures required for the structure to be taught (p;16),;

21-LeTacher's Role

Perhaps the greatest attraction of behaviorism is in the

possibility of providing-specific and direct guidelines for

instruction; The teacher's role is well defined in instruction

based on behavioristic principles; However, the state of the

art Zvi mathematics teaching indicates that clarity of purpose

and specified sequence of instructional steps do not in

themselves guarantee success in learning by students.

We take the view that knowledge is not passed on to the

passive student by the teacher (Gattegno, 1970; Piaget 1970-

The student generates knowledge through his or her actions

(transformations) carried out on objects (Piaget, 1970a) or

through interaction with the teacher (Gattegno, 1970) (see

Figure 2). Thus the teacher should not consider herself as a

repository and a transmitter rf knowledge (Vergnaud, 1983) to

the stUdent. The teacher's role is to create the enviroment

that is most congenial for the child to interact with her

(teacher). The most important task of the teacher is to select

appropriate activities that the child can carry out; The

teacher has then to determine "where the child is" from the

child's behavior as the latter performs the actiVitt8.
.

The

teacher's understanch-ng of the chiid:'s knowledge will be

compared with the teacher's goals for the child and adjustments

11 =-



made in the latter; As the child is working the teacher

carefully intervenes; providing the guidance and support that

is necessary to enable the child to make progress; Alsot the

teacher's intervention could be in the form of asking new

questions to enable the child to reflectt if possiblet on her

experience of doing mathematics;

To understand the child's actions and responsest the

teacher must formulate hypotheses about the child's'

capabilities and the possible progress she (child) can achieve.

This calls for testing the hypotheses which ultimately leads

to. the generation of further tasks and hypotheses . The

teachert in essenceo will take on the role of an hypothesis

formulator and tester with the specific objective of using her

knowledge about how a particular child thinks and acts. The

teacher's goal is to lead the child in the acquisition of a

knowledge or of a method to solve a task; But the teacher must

allow the child to generate her own conceptions or methods;

The role of the teacher suggested above is consistent with

the constructivist approach to teaching (Cobb & Steffet 1983;

von Glasersfeldt 1983); The principles of constructivism may

therefore have little meaning and application for the teacher

who believest firsti that she needs a textbook that explicitly

directs.all'her mathematics teaching; secondt that children

should be .taught in large groups with a minimum of child

initiated communication; thirdt that the child's own

constructed methods fOr solving arithmetical tasks are

unimportant and should be ignored a 0;)fourtht that children

need to be drilled to acquire adult methods and procedures. The

15



"constructivist teacher" is required to be creative and

sensitive to each chil&s, mathematical knowledge. This

situation places a great deal of responsibility on the teacher

as well as presenting an enormous problem when the teacher

comes to grips with the slow pace of progress in some children;

But the teacher should be encouraged by the fact that her.

success will not depend on how much of the adult concepts and

methods the child is able to master. Rather, her goal should be

to bring out the most prominent "mathematical" knowledge in the

child; This can only he achieved through the intelligent use of

the powers of the mind of all concerned, both the teacher and

the student (Gattegno, 1970, p. ii), thus making the

communication between the teacher and the child the most

crucial aspect of teaching.

The Figurative and OperatiVeAaPebfItbAbit

Piaget (1970a) distinguishes two apects of thinking that

are different, but complement each other. He calls these the

figurative and operative aspects. in Piaget's (1970a) view, the

essential aspect of thought is its operative and not its

figurative aspect (p. 15). But to obtain a complete picture of

children's mental development , we must consider the figurative

aspect in addition to the operative aspect (cf. Steffe, 1983).

To Piaget (1970a), for a child to know an object or some

"reality",. that child must act on the object and transform it

in order to understand how a certain state is brought about

(p.15) . The pperative'aspects of thought are the set of actions

and operations (internalized actions) of the child that attempt

to transform reality (Piaget, 1970b, p; 716); Thus Piaget

- 13 16



(1970b) points out that "operative" is a broader term than

"operational", as the latter is only related to the operators

(p. 716); On the other hand, the figurative aspects are the

activities that attempt to imitate reality: perception,

imitation (including graphic imitation or drawing); and mental

imagery (cf; truner's (1966) enactive and iconic

representations);

Empirical d Reflective AbStrAgtion5

The type of knowledge that a child derives from an object

depends on the sources of the child's abstractions. Piaget

(1970a) provides two sources from which the child can abstract.

First, there is the object itself, and second there are the

actions carried out on the object. Piaget (1970a) calls the

knowledge or abstraction derived from the object itself

"empirical" knowledge or "simple" (empirical) abstraction; The

knowledge or abstraction drawn from the coordination of

actions; and not from the object, is called logical

mathematical knowledge or "reflective" abstraction, using this

term in a double sense. For as Piaget (1970a) explains,

"Reflective" here has at least two meanings in the
psychological field, in addition to the one it has
in physics; In its physical sense refIectien refers
to such phenomenon as the reflection of_a beam of
light off some surface onto another surface. In a
first psychological sense abstraction is_the
transposition from one hierarchical level to_another
level of action (for instance, from the level _of
action_to_the level of operation). In a second
psychological_sense reflection refers to the mental
process of reflection, that_is0 at the level of
thoug.ht a reorganization tajces place (pp. 17-18)..

The' construction of units or unitary items (Steffe et al.,

1983; on Glasersfeldt 1981) by the child from things (sensory

- 14 17



material) constitutes an instance of pseudo-empirical

abstraction (von Glasersfeld, 1981, p. 52). When the child

takes these units as material and unites them to construct a

number (composite unity) then he or she has made a reflective

abstraction. Here the action is a mental act which is

reversible and therefore anoperation.

The Counting Types

Steffe et al; (1983) have demonstrated, through minute

analyses of first-grade children's counting behavior in the

context of solving arithmetiical tasks, that children construct

five different types of units;

s)untinq is definedas "the production of a sequence of

number words, such that each number word is accompanied by the

production of a unit item" (Steffe et al., 1983, p. 24)i Each

counting type is based on the type of unit item the child

appears to create and is aware of during counting, This view

agrees with that of Bridgman (1959) when he pointed out that,

"the thing we count_was not there before we counted
it, but we create it as we go along. It is the acts
of creation that we count" (p. 105) .

The unit items are the objects that are created by the child as

she isolates and focuses on certain sensory-motor signals, i.e.

visual,. auditory, and tactual perception , and also

T.oprioceptive sensation. The five counting types, in order of

sophistication, are counting perceptual, figural, motor,

verbal, and .abstract unit items; As the creation of these unit

items constitutes a developmental progression, the child who is

a counter of a particular unit item is capable of creating and

= 15- 18



counting more primitive items; Thus a child is classified as a

counter of the most adVanced unit items that she can create

while counting; Figure 3 (Steffe; et al.; 1983; p. 117)i

schematicallly represents the hierarChical classification of

counters and the types of items that they are aware of and can

create during counting.

Insert. Filure 3 about here

Counting Perceptual Unit Items

Steffe et al. (1983) refer to counting that takes

perceptual items as units as counting perceptual unit items.

The child who requires the perceptual component and is unable

to count unless a collection of perceptual items is actually

availabe is called a counter of, perceptu1 unit items. The

child's global experience comprises not only the perceptual

signals from which the perceptual items are isolated and

constituted into countabIeLunitsi but also the child's motor

acts (pointing or nodding), and the vocal production of number

words; But the child has no awareness that the number words

designate the numerosity of consecutively produced perceptual

unit items.

The first step towards independence from perceptual

signals in counting i6 when the child develops ability to

abstract figural representations of perceptual items (i.e.

visualized imaljes). This becomes necessary when perceptual

- 16
19



items presented in a task are hidden from the child's view

under a screen. The child's figural re-presentations of the

inaccessible perceptual items may be cdmplete or only partial

representations. A child is called a coin te-r DI fiqu_tAI unit

items if the child is able to construct and count _.figural

representac_%on8 of perceptual items which, though they are

presented in the context of a task, are not perceptually

available at the moment. The child's counting actions are

necessarily restricted to the area of the screen concealing the

perceptual items, betause the child is counting the hidden

Perceptual items. the child is unaware of the motor acts

(pointing or touching specific locations over the Screen) for

isolating the visualized images into discrete experiential

items.

CO-U-Aing Motor Unit Items

The next step from counting with figural items is when the

child differentiates its motor activity ft-cm other components

of a counting act (e;g., visual perception; utterance of a

number writd). The child can therefore execute its motor actions

intentionally as well as in absence of perceptual items; The

motor act can hdt4 be taken by the child as a Unitary event that.

has a beginning and an end; So the motor act becomes a

substitute for countable perceptuual items, and the child

attends to the motor act as a unit item. A child is said to be

a counter of motot stn -i-t Items whenever the child's tiountabie

items are limited to perceptual, figural, and motor units

(Steffe, et al., 1982, p. 85). Such a'child still requires the

actual performance of a motor act, accompanied by the utterance

L.' 20



of a number word, in order to create a countable item. The

counting activity has yet to be fully internalized by the

counter of motor unit items.

Counting Vgbal Unit Items

Th vocal production of a number word is itself a motor

act; But it is a special kind of motor act, because the .

proprioceptive sensations arising from the beginning and end of

the utterance of a number word are less apparent. The child

has, therefore,. more difficulty in considering its utterances

as discrete items. When the child has developed greater

self-awareness so that number words can be used as substitutes

for items of the previous types, she is called a counter Di

verbal ni 4-toms (Steffee et al., 1983, p. 120).

fi-o-untiabStract Unit Items

Counters of verbal unit items are not capable of what is

generally called "double counting." To do so requires the

awareness that the numerical structure designated by a number

word is a composite of individual units. Steffe et al. (1983)

call "a child a counter of abstract unit items' only when she

has acquired the capability of going from a number-word to the

conceptual structure which that word designates, i.e., to the

intenal construct that constitutes the particular numerositv"

(pp. 120-121); For example, to solve "7 + 4", the counter of

abstract'unit items will simply utter, "seven" then continue

With "eight, nine, ten, eleven" while extending four fingers to

keep track of his or her counting acts. By uttering, "Seven ",

the child can unite the counting acts, "one, two, three, ...

seven" into a numerical structure (composite unity). This is an
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example of integration and Steffe et al. (1983) call it tacit

integration (p. 69) because the counting acts were implied in

the utterance of "seven" but not actually performed.

The counter of abstract unit items itentionally keeps

track of its counting acts because they are instantiations of

the numerical structure to which "four" refers. Upon arrivig at

the number word "eleven"i the child can take it to designate

the numerical structure that contains 11 individualunitS. The

child who is a counter of abstract unit items does not need to

be given any perceptual items in order to create the conceptual

structure that constitutes countable items. But such a child

can take any sensory-motor unit itself as an abstract unit;

Counting Schemes

Counting is an activity that is repeatable and can

therefore be considered as a §c bgma. for; as Piaget (1980)

points out; "all action that is repeatable or generalized

through application to new objects engenders by this very fact

a 'scheme" (p. 24); But a scheme is not simply activity. von

GIasersfeId (1980) ,describes the complex nature of schemes as

follows:

Schemes as basic .sequences of events that consist
parts. An initial part that serves_as a trigger or
occasion. In schemes of action this roughly _

corresponds to what behviorists would call "stimulus"t
i.e. , a sensory-motor pattern.__The second part that
follows upon it is an.action ("response")_or an
operation (conceptual or internalized activity)
The third part ... is -what I call the result or sequel
-Of the activity (p. 81) .

The Child's counting activity in the context of solving

additionand subtraction is therefore a scheme. What triggers
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or presents an occasion for counting depends on the chill's

previous experiences. For example, the numeral "4" or number

word "four" may not itself trigger counting by a counter of

perceptual or motor unit items. The child may have to associate

the numeral or number word with a collection of items or a

figural pattern which then sparks off in che child an intention

to count.The second part of the counting scheme is a

constructive activity in which the child creates and counts

countable items-. As pointed out in the last section, the

countable items (from the child's view) will be perceptual,

figural, motor, verbal, or abstract unit items. The counting

scheme for a child will therefore include the countable unitary

items that she is capable of creating. The period (length of

time interval) during which a child creates her most advanced

unit item is referred to as the period of the counting scheme.

The counting scheme periods are referred to as the perceptual,

figural, motor, verbal, or abstract periods, respectively;

The Role of a Function Machine

The "function machine" is described in the literature

(McKillip & Davis, 1980) as a device that accepts numbers in

the form of input numerals and does something to these numbers,

giving the 'result as output numerals. Even though it is

possible.to construct a function machine that can actually

carry out an internal transformation on the input numerals to

produce output numerals (cf. the calculator or the
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microcomputer), the idea has been to use a simple box-with,

op nings, say, marked "IN" and "OUT" as illustrated in

Figuro 4.

Insrt Fiq.7re 4 about here

.

The adult is aware that what the machine does to the

input numerals is an imagination of the mind but the child

would usually "play try game" and believe that the machine

actually does something to the input numerals. The function

machine therefore provides an ideal device that caft be used by

the adult to simulate the operations of addition and

subtraction. Second, the device can be used to present

problematic situations that translate into addition,

subtraction, missing-addendp missing-subtrahend,

missing-minuend, comparison, and equalizing problems.

The working or operational steps bf the function machine

can be considered as the analogue of the parts of a scheme. The

first step, acceptance of input numerals; can be compared to

the first part; the trigger of a scheme of action. Next, the

second step; giving a result as an output numeral, can be

compared to the third part, the result or sequel of a scheme.

The child,' presented with an operation performed by the

machine, witnesses these two steps. But the child does not

"see" how the machine carries out the second step, the analogue

of the activity or operation of a scheme.
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Let us suppose the input numerals are "5" and "3" and

machine "does something to these numerals" and yields the

output numeral "8". We can then ask a child to infer the

operation (internalized or hidden action) she believes the

machine carried out. If the child is able to respond correctly

that the machine performed an "addition", then we can infer

that her knowledge of addition is an internalized or mental

action of which she is aware. Because, in order to respond

correctly, the child had to know either the addition fact "5 +

3= 8" or be able to mentally add 5 and 3 and compare her

result with the output numeral "8"; Such a child would have

demonstrated an operative (Piagetian sense) concept of

addition.

the

Another child might count her fingers or objects and

compare the last number word "eight" uttered in the counting

acts with the output numeral. This child may select "addition"

or "plus" as the operation carried out by the machine but use

different expressions. nr example, the. child may say, "the

machine makes 5 and 3 become 8". Further, if we replace the

input numerals with cards showing pictures ipf animals, say

birds on a card, then the latter child might not think in terms

Of the action on numbers, but physically transform the pictures

from two cards onto a third card, the output: This should

indica'Eebhat the child has not acquired addition as

internalized action To the child addition has to be acted out

by manipulating objects or their mental re-presentation,

perhaps as a recognizable figural pattern. The child's concpet

would still be operative but the actions would be actually
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carried out; At best this child can imagine and imitate actions

but might net be able to transform the action into a complete

internalized activity.

Given that a child believes that the function machine

carries out an operation or performs some action on the input

numerals, the child can be asked to indicate her conception of

this operation or action. That is, the words (addition, plus,

put together, makes a new number) a child uses to describe what

she Lhinks the machine does can be used to present problems to

investigate her concept and representation of addition. For

example, the child is shown two numerals on cards, say "7" and

"8" which are then given to her to put into the mackline. The

Child is then told that the machine "adds" or "puts together"

(or using her own words for describing addition) the two input

numerals, and she is to figure out the output numeral. To

present a missing-addend problem, the child is not shown one of

the input numerals, and either the interviewer puts the numeral

into the machine or the child is asked to shut =her eyes before

given the numeral and guided to put it into the machine. The

child is then asked to take out the output numeral and figure

out the unknown (missing) input numeral; It is hypothesized

that what the child imagines the machine will do constitutes

her Tepresentatjon.

The child's scheme for adding will reflect her concept of

addition. By using the function machine to present addition

problems, the child will enact re-presentations of her concept

of addition. Since the problem situation involving input

numerals into the machine may be different from the contexts in
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which the child would have previously learned to use her adding

scheme(s), the child will have to assimilate the new situation

into her existing scheme(s) for adding. Once the child has

adapted to this situation, subsequent tasks will provide a

context for her to modify her existing adding schemes in

solutions. Similarly, .the function machine can be used to

investigate the child's concept and representation of

subtraction.

Modeling

Models are useful in the detailed analysis of children's

mathematical constructions and abstractions in the context of

solving arithmetical problems; We use "model" in the sense of

cybernetics rather than of replica of a physical object, say,

aeroplane. The goal is to hypothesize conceptual structures and

systems of transformations that account for the mathematical'

behavior (overt or inferred) exhibited by the children under

observation; A viable way to provide models of children's

addition and subtraction concepts is, therefore, to attempt to

reconstruct the steps that led the children to whatever

conception of these arithmetical operations they might have

acquired; The reconstruction is purely hypothetical and is

based on our (observers') interpretation of the children's

behavior Ln performing the tasks involving addition and

subtraction. Steffe et al. (1983) point out this limitation in

modeling the child's conception of number and numerical

operation

Such a reconstruction is necessarily hypothetical,
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because another person's conceptions are; by
definition not observable. In this connection it is
crucial to remember that conceptual structures
(knowledge) are, in our view, not transferable ...
even if a child were aware of its own conceptions
and could reflect upon and verbalize them; even if
it told the observer (teacher, experimenter) what
it believes to bei say; its concept of number; that
observer could not but interpret that verbal message
in terms of his or her own experience (p. xvi);

However; the models that are constructed from

interpretation of observations made on some children will

remain viable as long as they (models) are not confounded by

other experience (or experiment). The models may then be used

for predicting or explaining future experience (or child

behavior); Nevertheless; from the constructivist's viewpoint;

the viability of a model.does not exclude its replacement by

another. Secondly the viability of a model is not only due to

the nature of the model; but also to the characteristic way of

conceptualizing the experiences portrayed by the model. Since

the constructivist believes that the child's concepts are

constructed from its own experience, any model of the child's

concepts entails making certain inferences about the child's

experience (which is invariably different from the observer's);

One basic activity from which children construct addition

and subtraction concepts is counting. The use of counting by

.young children to solve addition and subtraction problems; from

simple numerical combinations to verbal story problems; have

been very well documented (Brownell, 1928; Carpenter & Moser;

1982; Carpenter; Hiebert; & Moser, 1981; Davydov & Andronov,

1981; Fuson; 1982; Gelman & Gallistel; 1978; Groen & Parkman;

1972; Groen & Resnick; 1977; Starkey & Gelman; 1982; Steffe,
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Spikes, & Hirstein, 1976; Steffe; Thompson, & Richards, 1982;

Steffe, von Glasersfeld, Richards; & Cobb, 1983; Suppes &

Groen, 1967: Thaelor, 1981; Woods, Resnick, & Green, 1975).

Nevertheless, the work of Steffe and his collaborators (1976,

1982; 1983) has provided an alternative and promising

theoretical framework to account for the constructions and

development of children's addition and subtraction concepts.

Other researchers (Carpenter et al;, 1981; Carpentei & Moser,

1982; Houlihan Ginsburg, 1981) who have modeled children't

addition and subtraction concepts have significant differences

in their theorectical framework; First, their analyses of

children's behavior are based not on constructivism but on

behavioristic or information processing paradigms (Greens:),

1976). Second, mathematical knowledge is assumed to exist in

the environment independent of the child (human organism), and

it can be patted on dirbbtly by the teacher to the child; Thus

Carpenter (1983a) mentions the reduction of "mathematics to a

series of component skint that can be taught directly" (p.

104). Steffe et al. (1983) share Piaget's (1970a) views

concerning the growth of mathematical knowledge:

1_ think that human knowledge is essentially active.
To know is to assimilate reality into systems of
transformations; To know is to transform reality in
order to understand how a certain state is brought
about.. By virtue of this point of view, I find
myself opposed to the :view of knowledge as a copy,
a pa&sive copy, of reality (p; 15)

What a particular child assimilates as knowledge as a res,Alt of

;-
her actions ,or operations, will therefore greatly depend on the

child's previous knowledge or experience. The child's

experience is necessarily different from that of the observer
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(adult) , and may differ from that of another child. Third, all

children who can count to solve arithmetical tasks are

considered to be numerical (Starkey & Gelman, 1982). Thus the

children's actions are operative (Piagetian sense), But Steffe

(1983) has shown that the solution processes of some children,

though sophisticated in appearance, are still figurative and
-;

involve no operations (interiorized actions) but figural images

and re-presentations. Fourth, though these researchers have

identified the use of fingers and number word utterances in

counting processes, there is no attempt to discriminate between

the intentions of the children. As was explained the last

two sections, one child may count fingers as perceptual items,

another as motor items, and a third as abstract items; Children

using these different conceptions of units have been shown

(Steffe et al., 1983) to differ significantly in their

understanding of and solution processes for addition and

subtraction problems.

14F,THOD

The study was conducted as a teaching experiment. This

involved observing the children's behavior and probing their

mental processes during clinical interviews. There were also

teaching episodes during which the interviewer communicated

with the Child in an attempt to encourage the child improve her

counting skills; number word sequences, use of spatial and

finger patterns, and to show flexibility

counting, adding, and subtracting schemes.
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aubjects
Th0 subjects were eight first- and second-grade children

in an elementary school in the Clarke County School District in

Go-origin, which serves both middle and working class

communities. The experiment was conducted towards the end of

Spring 1983 when the first-gr'ade children had received

instruction in both addition and subtraction; The eigLt

children were selected from 17 others after about 20 to 40

minutes interview with each child individually; The children

were selected to reflect the possible variations in countingi

adding; and subtracting schemes that was evident from the

interviews; There was an equal number of males and femalet at

well as an equal number Of first- and second-gradett.

paterials

Two types of devices constructed with boxes were used as

"function machineb" to simulate addition and subtraction

operations and to present all types of addition and subtraction

problems (see Tables 1 through 6). The first function machine

Insert Tables 1 through 6

about here

has two input holes; marked "IN" and an output hole; marked

"OUT" (see Figure 4(a) ); The second function machine has only

one input hole and an'output hole (see Figure 4(b) );

Numerals written on cards were, used as input and output

numerals for the machines; Also pictures of animals on cards
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ant objects in sandwich bags were used as input and output

numerals. Blocks of centimeter cubes were available for the

children to use to form collections when necessary.

Procedur_g

The experiment was performed during normal school time

and the children were takeninto a small room individually to

be interviewed and taught. Each session was video recorded and

lasted from 20 to 30 minutes. The interviewer worked with each
.

child for 4 to 5 sessions and the video tape for each child was

analyzed before the next session. This enabled the interviewer

to formulate hypotheses about the child's counting, adding and

subtracting schemes and plan appropriate activities and

problems for presentation at the next session.

The addition and subtraction problems were orally

presented to each child using the function machines. Tables 1

through 6 show the different problems used but the number and

types of problems presented to each child depended on his or

her pei. ormance.

First, the function machine was introduced to each child

as a device that accepts input numerals (numerals or pictures

on cards and objects in bags); The child was then told the

machine will do something to the input numerals and give the

result as an output numeral; After this, the child was shown

two numerals and requested to put them into the machine and

take out the output numeral. The child's task was to determine

what she thought the machine did to the input numerals'that

resulted in the output numeral obtained.
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Second, the child's expression for describing the

operation was used to pt problems involving that

operation. The addition operation was used first in one or two

sessions, depending on the performance of the child, before

subtraction operation was introduced. More addition and

subtraction problems, as well as comparison and equalizing

problems were presented in later sessions.

Parts of some sessions were used as teaching episodes.

The final session for each child was used to conduct an

interview to determine the child's counting type.

REULTS

the

KftlItiOnConcepts

The children's knowledge of addition as an operation were

revealed in their responses for describing or characterizing an

addition irrigined to go on inside the "function machine" (see

Figure S(a)). Table 7 shows the various characterizations of

addition by the children; Only three of the eight children used

Insert Table 7 about here

the usual words, "add" or "adding" to describe the operation.

Two other children described the operation as "put ... together

to make ..." (i.e, put 5 and 3 together to make 8). These five

children seemed to have abstracted the input numbers five and

three from .the pictures of bi-ds on cards inserted into the



machine; They performed a mental addition (interiorized action)

and compared their results with the output numeral '8", which

was also abstracted from the pictures of birds on a card drawn

from the machine; We hypothesize that these five children had

an operative concept of addition; The children succeeded to

transform what appeared to be a transfer of pictures on two

cards onto a single card into a situation that involved mental

addition of numbers; They did lot simply attempt to imitate the

action they believed the machine carried out.

On the other hand, the remaining three children did not

make any numerical transformation. They focused their attention

.on 'the pictures of birds as input and output, and attempted to

describe the possible action they believed the machine to have

carried out. Their descriptions of the operation were "take

away ... put them on here" and "makes more numbers". Thus they

attempted to imitate or present a mental imagery of what might

have taken place inside the machine; They did not attempt to

transform the perceived situation; We hypothesize that these

three children had a figurative concept of addition.

Representations of Adding Schemes

Four representaticins of children's adding schemes that

reflect their addition concepts have been identified . The

representations, Ali A2i A3, and A4 (see Figures 6 through 9)

were observed in the context of children solving simple

addition, and missing addend (first or second) problems (see,

Tables 1 and 2). A basic scheme for -solving an addition problem



underlies .each of the four representations. Also one or more

specific schemes have been identified with each representation.

Insert Figures 6 through 9 about here

Representation Al

The basic scheme underlying this representation is

tefetted to as c4i-uh-t-ifig All. In this representation (see Figure

6) the child counts a collection of items starting from one
. .

till she utters the number word for one addend; The child then

counts a second collection of items starting from oneagain

till she utters the number word for the second addend. Nexti

the child might bring all the items in the two collections

together to make a single collection as shown in the diagram

after the arrow in Figure 6(a)i and then counts the items

starting from one; Alternativelyi the child may leave the two

collections where she initially established theMr and count all

the items starting from one by making an enactiVe bridge from

one collection to the other as shown in the diagram after the

arrow in Figure 6(b). The child takes the last number word she

utters as the answer. Since the items used to establish the two

collectionb will be recounted they must necessarily be

perceptual in Otder to leave permanent records for the

recounting. The following are the two specific schemes that

have been identified with this representation;
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1.; counting AI1 Inapined Collections. In this scheme (see

rigure 6(a)) the child physically combines the items in the two

collections to form a single collection, and then proceeds to

:count all the items, starting from one. For example, asked to

solve "2 + 5", and directed to use blocks, Hendry counted two

blocks and then five more in a separate location. Next, he took

the two blocks and added them to the five others and then

counted all the blocks uttering "1,2,3 ... 7" in synchrony with

touching the. blocks.

2. -----tii-a-ra-tedC-ollect_ions. In this scheme (see

Figure 6(b)) the child keeps the two collections in their

.

.separate locations, disregards the physical separation, and

counts all the items by making an enactive bridge from one

collection to the other. For example, Monica solved "6 + 8" by

first counting 6 blocks, placed them ina row, and then counted

8 more blocks in another tow below the 6 blocks. She then

recounted all the blocks without, first. combining them into a

single row.

Bepresentation A2

The basic scheme underlying this representation is

referred to as Counting from 1; In this representation (see

Figure 7) the child starts to utter number words from one, and

continues till she utters the number word for one of the

addends; The child may or may not keep track of her counting

acts up to this point. But the child then makes a separation in

her counting activity, and continues to utter number words

forwward while' keeping track of the counting acts by extending

fingers or:touching objects. The child stops uttering number



words when the number (from the child's point of view) of .items

used as records equals the second (other) addend, or when the

child utters the number word for the sum (if solving a

missing-addend problem). The child takes the last number word

uttered as the answer, the number of recorded items as v:he

answer (if solving a missing-addend problem) . The following; are

the three specific schemes identified with this scheme.

1.. Counting Perceptual Unit Items From 1. In order to *use this

scheme correctly,-the child should se4uentially touch objects

or her fingers in synchrony with uttering number words from

one.The child would stop counting appropriately if she made a

separation after uttering the number word for the first

(selected) addend and recognized a spatial pattern that

corresponded to the second addend. The two children who

attempted to use this scheme both failed to make separations or

use spatial patterns; For example, Hendry (6yr; 9mo), a counter

of perceptual unit itemsi sequentially touched all his fingers

till he ran out in synchrony with uttering "1,2,3 ... 10"i in

an attempt to solve "3 + 4"; Similarly, Monica (8yr; 5mo.),

counter of motor unit items, realized she needed more than her

IO fingers to solve "7 +.8". But when the interviewer suggested

she could use some of his fingers, Monica simply counted all

the 20 fingeri her 10 fingers as well as those of the

interviewer's. Monica nodded in agreement when the interviewer

asked if she was sure of the answer.

2. Count inst_ 4otor Unit Item this scheme the'child

counts her motor acts beginning to utter number words from 1

till she utters the number word for the first (selected)
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addend. The child then continues to utter the succeeding numbe'r

words in synchrony with producing motor acts equal to the

(second addend. The difficulty wi h this scheme is the need to

keep track of the counting acts for the second addend. Children

use finger patterns to enable them to overcome this difficulty.

It is important for the child.to make a visual or physical :

separation between items representing the two addends; For

example; Paris (8yr. 4mo.)i a counter of abstract unit items,

failed to make a separation when solving "7 + 8"; He extended

18 fingers while uttering "1,2,3 ... 7-8,9,10 ... 18"; Even

though Paris paused after 7 before resuming counting, h

appeared to have counted 8 more fingers after he had used all

his 10 fingers; This accounted for why' Paris stopped counting

after uttering "18" and seeing a pattern of his 8 extended

fingers; Paris had no difficulty in using this scheme to solve

"4 + 10". There was a natural separation after counting his 10

extended fingers so he easily extended four more and stopped.

3 . * -terns In.this scheme the child
_ .

utters the number word sequence from 1 till she utters the

number word for the first (selected) addend. The child then

pauses momentarily before continuing to utter succeeding number

words. The child may rely on the rythmic pattern in the

utterances of .the number words corresponding to the second

addend in order to know when to stop; Shani (7yr; lmo.), a

counter of verbal unit items, recalled "11" after few seconds

in answer to "3 + 8". Asked to pretend to explain how she

solved the problem to her friend; Shani replied,
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"I would_say4 1,243 8. Because that is the hard
one, 3,10,11" (emphasizing "11").

Shani deliberately decided first to utter the number words from

one through eight, because she foresaw it was going to be

difficult for her to keep track if she began with the number

words from one to three. The raising of her voice to emphasize

"11" and the fact that she stopped uttering number words

indicate her awareness of having counted three more. Shani

confirmed her inability to keep track of longer number word

utterances by refusing to attempt "7 8 ". She complained, "I

can't do 7 and 8 because that is a long one. I can do 7 and 2".

Representation A3.

The basic scheme underlying this representation is

referred to as CnAmting On; In this representation (see Figure

8) the child utters the number word for one given addend, and

then continues to utter the succeeding forward number words.The

childkeeps track of her number word utterances mentally or by

extending fingers or by using objects as records. To solve an

addition problem, the child stops uttering number words when

the number of items used as records is the same as the other

given addend. The child then takes the last number word uttered

as the answer. To solve a missing addend problem, the child

stops uttering number words when she utters the number word for

the given sum; The child then takes the number of items

recorded as the answer. The following are the five specific

schemes that have been identified with this representation.
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1. counting_Dn-Using PQrqkptuai Unit Items. When the child

intentionally counts on* using perceptual items* especially

objects other than her fingers; then we say the child is

employing the Counting On-Using Perceptual Unit Items scheme.

For. example; to solve "30 + 13'i Valerie (7yr. 3mo;)* a counter

of abstract unit items* spontaneously asked frit blocks to

count; After establishing two separate collections of 30 and 13

blocks* Valerie touched the collection of 30 blocks once and

said; "30 ". She then continued to count the other 13 blOcks by

uttering "31;32;33 ... 43" in synchrony with touching the

blocks. When she was done* she said* " that's 43". Valerie's

action indicated that she intended to count on from 30. This

observation is supported by the fact that she had counted on*

using motor unit items in the preceding task , "7 + 8 ". But she

needed to count from one before she could construct the

numerical structure, 30. After counting 30 blocks she knew

there were 30 individual blocks so.she made an integration

her previous counting acts when she repeated "30"; We

hypothesize that Valerie could not; however* make a tacit

integration of 30 counting acts as she succeeded to make for

eight counting acts to solve "7 + 8 ".

2. Counting On -Using Motor Unit Items. When a child relies on

her motor acts to count on; we say that the child is using the

Counting On-Using Motor Unit Items scheme; Cullen (6yr. 9mo.),

a counter of abstract unit items, solvcd the missing addend

task; "34 44" by sequentially extending her fingers in

synchrony with.uttering; "35,36,37 ... 44". She then said; "10"

while IookIng at her open two hands. CUllen's intention was to
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count her.motor acts of putting up fingers; When she was done

She did not know how many number words she had uttered, until

she saw her 10 fingers all extended; We infer that Cullen

counted on using motor unit items rather than verbal unit

items; This does not exclude the fact that she could haVe

constructed abstract units from her motor acts.

3. CountingDon=Using Verbal. Unit Items. In order to count On

using verbal unit items without using finger movements to keep

track of howmany number words have been uttered; the child

resorts to the use of rythmic (temporal) patterns; Jeff (8yr.

5mo:)i a counter of abstract unit itemsi used a temporal

pattern of two number words followed by a string of five number

words to solve "7 + 8 ". He uttered "8=9i10=11#120 13,14,15 ".

The break in his utterances after "10" enabled him to mentally

keep track of the next fie number words. On other occasions

when children were observed to count on addends greater than

seven, their number word utterances were accompanied by finger

movements. In some cases the children used their fingers

say, by pressing them on their thighs;

4. Codin-t j,11-BASIS21.0$tract_unit Items. The counter of

abStratt unit items capable of taking any SenSOi-iiiiitor unit

as an abstract unit (Steffe et aLi 1983, p. 67). When such a

Child cleatly shows chat she counted on to solve an addition

problem but used none of the ;ObSerVable sensory -motor units,

then she is classified as Counting On-Using Abstract Unit

items; For example; Jef used abstract units to count on from 8

to solve tipti 11"; He sat silently for about 10

seconds bei:ore saying the answer was "3". The following portion
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of his protocol (I: interviewer, J: Jeff) shows how he solved

the problem:

I: Can you tell me how you found out?
J : I had 8 and you had 3, and together makes 11.
I: How did you know I had 3?
J: I counted them.
I: What did you say when you counted?
J : 8-9,10,11.

Jeff had earlier in the same interview recalled immediately

that "8 3" is "11". If he had related this addition ,fact to

the missing-addend problem then he would have used it to solve

the task. But when Jeff was asked hDw he got "3"i he replied,

"I counted them". We infer that Jeff counted as he claimed and

'constructed three abstract units from the internalized counting

acts, "9,10,11".

5. AddIn-g-On By Tens And Ones. This scheme involves adding,

first tens to one addend followed by adding ones; This scheme

was uffed to solve a missing-addend problem by John; He gave

"34" as the answer to "10 + = 44" and explained as follows:

"1 added 3 tens to 10; That will be 40. _And I
added 4 to the 3 which gives you 34'. And you
need 10 to make 44".

John's explanation indicated that he added 3 tens to 10 to

obtain 40; He immediately realized that he needed 4 more to

make 44. So rather than continuing to obtain 44 after saying

"40 ", John went on to complete his goal of finding the missing

addend. He.added 4 to 30 to obtain 34. John's use of "3" rather

than "3 tens" or "30" reflects his strong reliance on place

value ideas .(see the Recalling Sums Using Place Value scheme

below) .



RgOresQUtathaAi

The basic scheme underlying this representation of

additon is referred to as Recalling Slims. In this

-.
representation (see Figure 9) the child searches for and finds

an addition fact from memory that involves both or one addend

and modifies it; As soon as two numbers in the recalled additon

fact fit the given numbers in the problem, the third number is

taken as the answer; The following are the four specific

schemes that havebeen identified with this representation.

1. Recalling Sums By Guesairm; This scheme involves the child

recalling an addition fact immediately (about 2 seconds) after

the problem was presented; With regard to. the representation

shown in Figure 9 the child's action follows only the arrows 1

and 4 without following arrows 2 and 3. That i8; the child

obtains the required sum without any intermediate partial sum;

The child who is not "guessing" but has meaningfully habituated

(Brownell, 1928) the addition fact should be able to explain

her answer by using one of the already discussed schemes.

Children who used this scheme and obtained wrong answers

sometimes admitted that they guessed. Children also usually

followed a wrongly guessed answer with other guessesi

2. Recalling Sums Using Doubles. This scheme involves the

child recalling an addition fact that is the double of one of

the given adodends. The child then increases or decreases tht

"partial sum" by a number that is the difference between the

given addends to obtain the required sum. To solve a missing

-addend problem, the child increases or decreases the doubled

addend by the difference between the given sum and the partial

4

0



sum to obtain the mi8Ssing addend. For example, John (8yr.

2mo;)i a counter Of_abstract unit items, solved "15 +

31" mentally and explained his solution as "Fifteen plus 15 is

30, and you need one more to make 31 ". John constructed the
missing

missing

did not

addend from 15 and one. He obtained 15 as part of the

addend ( the invterviewer's input numeral which John

see) by recalling the doubles fact "15 + 15 = 30". He

then realized the partial sum, 30 had to be increased by 1 to

obtain the given sum; 31. So he also increased 15 by-1 to

obtain 16 as the missing addend;

3. Recalling Sums TO-A-Deeade. In this scheme the child

recalls an addition fact that involves adding a number to the
larger addend to yield the next decade. The child then

increases the decade by the difference between the bther addend

and the hUMber added to the larger addend; The answer is the
final sum Obtained; To solve a missing"-addend problem, the
child increases or decreases the given addend to obtain the

next or the preceding decade respectively. The child then adds

the increment to or subtracts the decrement from the difference

between the given sum and the decade to obtain the missing
addend. For example, to sovle "15 + = 31", John sat .for

some time and said, "You put in 16". His explained his answer
as follows:

"You already have 15 and you add 5 makes 20, and10 more- makes 30. That's 15 and 1 more is 16".

We infer that John intended to add numbers to 15 till he got

the decade nearest 31, that is, 30.' He therefore added fis:re to

15 to get the decade, 20 and then added 10 more to get the
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decade, 30. John kept track of the numbers he added to 15, and

realized that he had used 15. He needed one more to make 31 80 he

added it to 15 to get 16, since his goal was to find how many he

should add to 15 to get 31.

4. eca-1-2,flLjAge. This scheme involves the

child recalling the sum for the numbers in the tens and ones

places separately and coordinating the two sums to form the

appropriate number. If the sum of the numbers in the ones place is

greater or equal to ten; the sum obtained for the numbers in the

tens place is increased by one (or one ten) ; For example; John

explained his answer to "13 + 15" as; "the 3 and 5 gives you 8;

and 1 plus 1 is 2; So it must be "28"; We infer that John was

aware that he was adding tens when he said; "1 plus 1 is 2 ". So he

mentally converted the two tens into 20 and coordinated the eight

ones with it to obtain 28.

Subtraction Concepts

The children's knowledge of subtraction.as an operation was

revealed in their responses for describing or characterizing a

subtraction imagined to go on inside the function machine (bee

Figure 5(b)). Table 8 shows the observed children's

c haracterizations of subtraction. Hendry and Shani deSeribed the

Insert Table 8 about here

o peration as "make less" and "changed it from six to four

respectively; Monica's description was; "it took two away"

(pointing with her finger to show the two empty spots on the

4
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output card). These three children's descriptions suggested that

they attempted to describe the physical action that they imagined

the machine- to perform on the inputs (pictures of animals on

cards) . There was no effort to transform the situation into a

numerical operation that could be carried out mentally. However,

Hendry and Shani later selected "take away" from the suggestion,

"did the machine add, subtract; or take away"? We infer that these

three children had a figurative concept of subtraction;

Cullen, Jeff, Parisi and Valerie described the subtraction

they imagined to gb on in the machine as "take away"; John was

the only child to use the "mathematical" term "subtract" to

describe the operation; These five children's description

involved the mental action of taking away or subtracting two from

six. Their responses indicated that they transformed the

collections of animals into numerical structures and operated on

the numbers mentally. We infer that the five children had an

concept of subtraction.

1167 TRA-Z_7MAM. 711711.7.A.Mil.21..7.67...7..11%= WA= L...7 I I LT.

Six representations Cr children's subtracting schemes that

reflect their subtraction concepts have been identified. The

representations, Sl, S2, S3 S4, S5, and S6 (see Figures 10

through 15) were observed in the context of children solving

Insert Figures 10 through 15

about here
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direct subtr'action, missing-Subtrahend, missing-minuend,

comparison-more; comparisti-less; equalizing-add, and

equalizing-take away problems (see Tables 3 through 6). A basic
scheme for solving a subtraction problem underlies each of the six
representations. But one or more specific schemes have been
ihdentified with each representation which reflect the integration
of counting unit items in the children's schemes for subtractingi

-Insert Tables 3 through 6

about here

pepresesitation_ai

The basic scheme underlying this representation of

Subtraction is referred to as Seoarating. In this representation

(see Figure 10) the child counts perceptual items to construct
collection equal to the larger given number in a prOblem. The
child then separates and counts items equal to the smaller given
number to establish a new cdllection. Finally, the child counts
the remaining items of the fit-St collection and takes the last
number word she utters as the answer. Only perceptual items which
can leave permanent records for the second and third counting

activities, could be used with this scheme. The specific beheme
for this representation is; therefore; referred to as Bt.paTatinq.
The following 0.1ustrates how Shahi; a counter of verbal unit

items; used this scheme to solve 5'1.

Shani sequentially took 9 blocks from a box_ and
placedthemjn_her_hand; while uttering "1,2,3
She arranged_the_blocks in a row, and sequentially
separated 5 blocks in Synchrony with uttering
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"lt2;3t4t5"; Next she counted the remaining 4 _

blocks by subvocalizing number words and said; "4"
(with emphasis)

Shani transformed the task into "how many blbekt will be left

from nine if she took away five"? This is indicated by her

subvocalizing the counting acts for the blocks left. She was only

'interested in the last number word so she emphasized it to signify

that she was done;

Representation S2

The basic scheme underlying this representation of

subtraction is referred to as Addilag All. In this representation

(see Figure 11) the child counts perceptual (items to construct two
. .

colleetiOnt equal to the given numbers in the problem; The child

then recounts all the items.in the two collections by making an

enactive bridge from one collection to the other or by fitttt

joining the collections to form a new single collection; The

specific Sbhettie identified with this representation is referred to

as Ong All. This was similar to the Counting All In sepatated

Collections identified as an adding scheme, but the analogue of

the Counting All In Joined Collections scheme was not identified

in the study; The following is part of a protbdOl which how

Monida-used this scheme---to solve " - 2 = 4 ", presented with

blocks in sandwich bags;

I: SO how many did I put in? (The interviewer had put
inthe minuend withodt showing it to Monica).

M: 3 Guesses).
I: How are you going to find out?
M: Count on my fingers.



I: Can you do so?
M: (Simultaneously extends two fingers on her right hand

and four fingers on her left hand). 1, 2, 3 . . . 6,
in synchrony with folding down her extended fingers.

After guessing ' Monica reorganized her thinking, and perhaps

recalled how the interviewer had previously guided her to solve a

similar task " - 3 = 5". She established the two collections

for "2" and "4" simultaneously and then counted all extended

fingerS; Monica did not juxtapose the extended fingers on both

hands before counting;

Representation S3

The basic scheme underlying this representation of

subtraction is referred to as Trial And Error; In this

representation (see Figure 12) the child constructs a collection

equal to the larger number; The child then guesses the answer to

the problem and separates items equal to this number, and counts

the remaining items. If the last number word uttered is not equal

to the given number, the child increases or decreases the

guessed number and repeats the separating action. The child

continues to modify the guessed number until the remaining items

after separating some items, equal the smaller number; Ae child

takeS the last number word uttered in the final counting activity

as the answer. The specific scheme for this representation is

referred to as the Trial AnA Error Separating. The following

illustrateS how Cullen used this scheme to solve "13 -

Cullen counted 13 blocks and made them into a heap.
She then separated 6 blocks, counted the remaining
blocks, and found there were left rather than 9. .

She recombined the blocks, separated 5 blocks, and
counted the remaining 9 blocks. She answered, "5".

4
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When Cullen found that there were seven blocks left, she realized

that the separated blocks were two more than she wanted. So she

decreased seven by two and separated five blocks. Had Cullen

known that five was the answer, she would have uttered it

immediately. But her scheme required that she checked to see that

nine blocks were left; Hence her need to perform the second

separation of blocks and count the remaining blocks.

Representation S4

The basic scheme underlying this representation is referred

to as Counting Up. This scheme is similar. to the Counting On

scheme'for addition; In the representation (see Figure 13) for

this scheme; the child utters the number word for the smaller or

any given number, and then continues to utter succeeding' forward

number words; The child keeps track of her number word utterances

mentally or by using fingers or objects as records. The child

might co.unt up to the other given number, and take the number of

cbunting acts recorded as the answer. The child might also count

up as many times as the second given number' and take the last

number word as the answer. The four specific schemes identified

With this representation were as follows:

1. Counting Up-Using Abstract Unit Items.

2. Counting Up-Using Verbal Unit Items;

3. Counting Up-Using Motor Unit Items.

4. Counting Up-Using Perceptual Unit Items.

The following illustrates the Counting Up-Using Motor Unit Items

scheme to solve " .7 = 7 ".

Valerie said., "It's like adding two sevens up.
7-8, 9, 10 ;__; 14 ", -in synchrony with extending
7 fingers. "Fourteen";
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Valerie intended to start at seven, then,extend and count seven

fingers; She also knew that the last number word will be the

answer, so she repeated it,as soon as she was done,

Representation S5

The basic scheme underlying this representation is referred

to as Counting Down; In this representation (see Figure 14), the

child might begin by uttering number words backward from the

larger given number and proceeds counting to the smaller given

number, keeping records of the number of counting acts. The Child

takes the number of counting acts recorded as the answer' and the

scheme is referred to as Counting Ppmn TO. The child might also

begin by uttering number words backward and stop after recording

as many counting acts as the smaller given number. The. last number

word is taken by the child as the answer, and the scheme is

referred to as r,uiralaikhig,,,DpR111-1. The six specific schemes

identitied were as follows:

1. Counting Down To-Using 7"rbal Unit Items;

2. Counting Down To-Using Motor Unit Items;

3; Counting Down To-Using Perceptual Unit Items;

4; Counting Down With-Using Verbal Unit Items.

5; Counting Down With-Using Motor Unit Items.

6; Counting Down With-Using Perceptual Unit Items.

To solve "13 = 9 ", Jeff uttered "13-12,11-10-9", and

answered, "3 - 4", without any finger movements. We infer that

Jeff used the Counting Down To-Using Verbal Unit Items scheme.

Our hypothesis is supported by the fact t.iat Jeff paused after 11,

and after 10. These, pauses enabled him to keep track of his number

word utterances.
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The following illuStrates how Paris used the Counting Down

With-Using Perceptual Unit Items to sblVe "18 7".

Paris uttered_"18-1746-15-13",_in synchrony with
folding _all his left fingers. He stopped, counted
the _folded fingers, and continued "12-10"i and
fOlded two more fingers. Paris then answered, "10".

pati8 intended to count backward seven times, by creating seven

perceptual items. He did not maintain a mental count of his

folded fingers so he interrupted the counting activity to find

out. The pauses in his counting acts was the effect of his poor

backward number word sequence; Our hypothesis is supported by

Paris' ommission of "14" and "11". Also, Paris did not count the

MotOr acts of folding fingers, because he did not look fOr finger

patterns;

Representation S6

The basic scheme underlying this representation i8 referred

to as 4ecalling Number Facts; In this .representation (see Figure

.15) the child recalls number faCtS frOM memory until she recalls

an addition or a subtraction fact that involves two of the given

numbers in the preibleM. The child then takes the third number as

the answer. The follbWing are the five specific schemes of the

representation.

1. Bec-alling Result By Guessing; This scheme is similar to the

Redtlling SuM By Guessing scheme for adding; But in Ehig case,

the recalled number fact can be an addition or a subtraction. The

child who uses this scheme, with understanding, should be able to

explain how his answer could be obtained by using one Of the Othet

subtracting schemes or an adding scheme. For example, Parit

solved "9 -;6" by saying, "3" immedately after the problem was
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presented. He explained his answer by extending nine fingers,

folded down six fingers, held the three remaining fingers, and

said, "three will be left".

2. t- 11.tkEr-. 91.0. a . In this scheme the child recalls an

addition fact that involves the two given numbers and relates it

to the problem. The child takes the third number, which was not

given, as the answer. This scheme follows the path given by the

arrows 1 and 6 in Figure 15. For example, to solve "how many more

is 5 than 3", Valerie said, "2, because 2 and 3 is 5". We infer

that Valerie recalled the addition fact "2 + 3 = 5", and related

it to the given numbers in the problem. She then realized that 3

and'5' were the given numbers, so she gave "2" as the answer.

3. Recalling Subtraction Fact. This scheme is similar to the

Recalling Addition Fact scheme, but in this case, the child

recalls and relates a subtraction fact to the given problem; For

example; Jeff recalled the subtraction.fact, "5 2 = 3" and

related it to the problem " 2 = 3". His answer "5" was the

number that was not given in the problem.

4. RecailIng liumbrfacts By Trial and Error. In this scheme the

child recalls successively, at Ieast two Addition or Subtraction

Facts that comes to his mind until the recalled number feet

involves the two given numbers. The child then relates the number

fact to the problem and takes the third number as the answer. The

child uses this scheme when he does not know how to modify hit

first recalled number fact to make it involve the two given

numbers. For example, to solve "24 - 12", John recalled the

addition fact "14 + 12 = 26 ". He realized it did not relate

the problem, that is the sum was not 24. So he recalled "12 + 12
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= 24 ", which related to the problem; and took "12" as the answer

John's explanation for making a second recall was that;-"I used 14

and 12, and got 26, but that didn't work; so I tried 12 plus 12

and that worked"; We infer that John was not aware that if he

added 12 and 12 he will get 24 until he recalled the number fact

"12 + 12 = 24". Alsoo John did not realize that decreasing either

14 or 26 by two will give the Correct result. John s explarration

indicated- that he was merely trying another number fact to see if

"that will work".

5. Becalling-Derived Facts. In this scheme the child recalls an

addition or a subtraction fact that involves at most one of the

given' numbers. The child then modifies (increases or decreases)

the numbers until he obtains a number fact that involves the two

given numbers. The child takes the third number' not given, as

the answer. For example to solve "14 = 7", John said, "7

and 6 is 13 1 more is 14", and answered, "7 ". John's first

recalled addition fact, "7 + 6 = 13" involved only one given

number. So he knew he was not done. John, therefore; increased

the sum by 1 and mentally increased 6 also by 1. This led him to

recall the number fact, "7 + 7 = 14"i so John took "7" as the

answer;

it
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DIscussImi

Piaget (1970a) identified four fundamental

characteristics of an operation:

FitSt an operation is an action that can be
internalized; that is, it can be carried out in
thought as well as executed materially Second,.
it is a reversible action ... Third it always
supposes some conservation, some invariant ...
fourth ... (an) operation is related to a system of
operations, or to a total structure (pp. 21-22);

Simply put, an operation is an internalized and reversible

action that is invariant and is embedded in a system governed

by rules. Addition satisfies these four characteristics with

subtraction as its reversal and with the system of the whole

numbers as the underpinning structure. The adding schemes that

have been identified and which involve counting, that is,

Counting All, Counting From and Counting On reflect the

material execution rather than the internalized action of

addition. In other words; even though these schemes are 'used

on mental re-presentations of abstractions from previous

experiences, they are actions that have not been completely

internalized. The activities of uttering number words and

creating unit items (perceptual, motor, verbal) form an

integral part of the child's means for executing the action of.

adding; Un the other hand, the non-vocalized schemes, that iS,

Recalling Sums and Counting On-Using Abstract Unit Items are
_ .

completely internali-ed actions.

Steffe et al. (1983) characterized children's counting

schemes for adding as extensions. These extensions were
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identified mainly in the context of children solving tasks

involving partially or totally hidden collections; The adding

schemes that have been identified in this study with children

solving tasks presented mainly in the context of the function

machine are consistent with the extensions identified by Steffe

t al. (1983); This supports the view that the addding schemes

and especially the counting unit types (counting perceptual',

motor, verbal; or abstract unit items) are normal constructions

by children as they acquire numerical concepts. That iS; the

counting types are not constrained to the singular context of

having children count partially and totally hidden collections.

These same schemes can be observed in totally different

contexts.

This scheme was identified as the lowest level

of children's representation of addition; This was the only

scheme Hendry (6yr. 9mo.) and Monica (8yr; mo;) ; counters of
0

perceptual and motor unit items respectively; used correctly to

solve addition problems. Paris (8yr; 4mo;), a counter of

abstract unit items used this scheme, but it was prompted by a

suggestion from the interviewer to use blocks after failing

several attempts to count on to solve "30 13'----tprobably due

to his faulty number word sequence beyond "30"); Valerie (7yr;

3mo;); a counter of abstract .unit items also used some its

this scheme: but because she counted on from 30 after

establishing two collections for "30" and "13"; her scheme was

classified as 'Counting On- Using Perceptual Unit Items.



The.Counting All scheme requires three counting sequences

(see Figure 6). But even the Counting All In Separated

Collections scheme cannot,be considered as an example of Steffe

et al.'s (1983) simple extension; Because the child's intention

is to count a single collection just as in the Counting All In

Joined Collections scheme; The only advance is that the child

realizes before counting thatthe physical separation between

the two collections can be ignored. The activity part of this

scheme is included in Houlihan and Ginsburg' s (1981) Counting

From 1 using concrete aids; Carpenter(1983b) and Hiebert et

I; (1982) also classified their Counting All strategy as the

101,-/eSt strategy children use to model addition;

fountin-grom_l. This scheme was identified as an advance over

the Counting All scheme for two reasons. First; the Counting

From 1 scheme included the ability to count verbal unit items

which -the children who were limited to the use of the Counting

All scheme lacked. Second, the children who used the Counting

From 1 scheme solved a wider range of problems than those who

used only the Counting All scheme.

Shani (7yr; lmo.), a counter of verbal unit itemsi used

the Counting From 1 scheme to solve nearly all her addition

tasksi including missing.-addend tasks. Paris was the only

counter of abstract unit items who used this scheme; Monica, a

counter of motor unit items; used the Counting Perceptual Unit

Items From 1 scheme; But her solutions were incorrect because

of her failure to make separations in the counting acts in

order to keep track of the addendsi especially the second;

Monica usually used her motor acts of finger extensions to
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establish two collections to represent the addends on separate

hands; She then recounted the fingers as perceptual items;

Monica's scheme was identified as Counting All, because Monica

could not amount her motor acts to establish a single collection

tnat included both addends; Hendry also failed to use the

Counting Perceptual Items From 1 scheme correctly; becauset

like Monica; he also failed to make separations in the counting

activity.

Some reseachers do not distinguish between th4counting

activity ("response") in the Counting From 1 and the Counting

All schemes. Carpenter (1983b) and Hiebert et al. (1982)

identified only Counting; All; and Houlihan and Ginsburg (1981)

identified only Counting From 1 using or not using concrete

aids. The latter included "counting in which the child claims

to have just counted numbers" (p. 99). We also observed this

situation but we did not identify this as Counting Abstract

Unit Items From 1 scheme (see Table 9);_Firsti counting

abstract unit.items was only attributed to children classified

as counters of abstract riit items and therefore able to

consturct a numerical structure (cf; Steffe et al;i 1983; p.

68); Second; counters of abstract unit items when counting

mentally are likely to count on than count from 1; Counters of

verbal and motor unit items did perfrrm mental addition but

their explanations indicated that they re-presented to

themselves spatial 'or- figural pa.tterns or imagined counting

acts which they then mentally monitored and counted (cf; the

example given below of how Shani solved "5 + = 7 "). Our

claim is consistent with Houlihan and Ginsburg's (1981) report
4
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that "the child claims to use some kind of mental picture such

as dots or lines" (p. 99); Thus our definition of Counting

Perceptual, Motor, or Verbal Unit Items From 1 includes the

counting of the re-presentations of counting activity using

these unit items. However, we hypothesize that when a counter

of abstract unit items re-present a sensory-motor item td

herself, the child constitutes, the item as an abstract unit.

The. Counting Verbal or Motor Unit Items From 1 schemes

are classified by Steffe 'at al. as inttlitiv_e extension and the

Counting Perceptual Unit Items From 1 scheme is called simple

extension_._

Counting On. This scheme was identified as the second highest

level of the observed children's representation of addition.

Cullen (6yr. 9mo.) and Jeff (8yr. 5mo.) as well as Paris and

Valerie, all counters of abstract unit items used mainly the

Counting On scheme. Cullen, Jeff, and Valerie used four out of

the five Counting On schemes (see Table 9) . Paris gave no

indication that he could count on, using abstract unit items

(than is, count on mentally and respond correctly to the

problem); He always had to verbalize his thoughts after sitting

quietly for a long time before he produced correct responses.

The only occasion Shani could be classified as using the

Counting On scheme was when she solved "5 + = 7". But the

evidence is suspect because Shani initiall'y guessed "13", "9",

"II" and "IO" as answers in that order and then said, "2 more".

Her explanation w "My mind said 6 and 7 so I said 2 more".

Shani's actions indicated that she first attempted to add

mentally 5 more to 7. Her incorrect responses indicated her
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Inability to count on correctly beyond 7 by 5 more. The most

plausible interpretation is that Shani did noi: count on but

re-presented the counting acts, "1,2,3 ... 7" to herself but

only vocalized the part of the counting acts, "6,7" to show how

she figured out the answer. This interpretation is consistent

with the Counting From 1 scheme she used frequently; Monica and

Hendry also gave no indication that they could use the Counting

On scheme.:

Houlihan and Ginsburg (1981) identified two strategies of

the Counting On; They included the use of fingers in the
. .

Counting On -Using Concrete Aid strategy; We distinguish between

the use of fingers as perceptual and motor items, and

identified these two uses with separate schemes.Carpenter

(1983b) and Hiebert et al. (1982) identified two strategies,

Counting On From First (smaller) NuMber and Counting On From

Larger Number, which focus on the addends in the problems

rather than the qualitative differences in the items used for

'.punting on. We did not always make the first addend smaller

and the children usually counted on from the larger addend. One

child, Cullen even asked in her first interview, "Can I Start

With 45", when solving "16 + 45". This indicated some children.

might count on consistently from the first (smaller) addend

because they are not sure it is permissible to reverse the

order of the addends; Cullen's question indicated that she was

aware that the results would be the same when she reversed the

addends, but she did not know that she would be allowed to do

so.
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Steffe et al. (1983) restricted the scheme, numerical

extension to the counting on scheme when the child constructs

a numerical structure during the process of counting; All the

children in the study who counted on also used the scheme to

solve missing-addend problems that involved an addend at least

greater than 10 (see Table 10) thus these children could

construct numerical extension schemes;

Recalling Sums. This scheme was identified as the highest

level of representation of addition by the children in the

study; This is consistent with the findings of Carpenter

(1983b). Steffe et al. (1983) did not elaborate on bhildren's

use of this scheme but only counters of abstract unit items

were identified with the use of this scheme. For example,

Chri,stopher used what we call Recalling Sums Using Doubles and

Recalling Sums To A Decade to solve "7 + 5" and "6 + = 10".

(pp. 106-107) . Table 9 shows that one child, John (8yr. 2m0.),

a counter of abstract unit items, answered nearly all problems

presented to him by Recalling Sums. His answers clearly

indicated that he could recall many addition facts from memory.

His only use of the Counting On scheme was when he added on by

tens and ones to solve "10 + = 44 ". But he showed he could

(punt on in a problem situation when he. solved how many were in

a known hidden collection and an unspecified number of visible

items. This problem was similar to that used by Steffe et al.

(1983)i and it was used in the determination of his counting

unit type.
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Recalling sums using doubles or to a decade is

contingent upon a child'S ability to recall immediately the

addition fact involving the doubles or the decade number. For

example, John's use of the doubles fact to solve "15 +

31", depended on his immediaue recall of "15 + 15 = 30".

Cullen, Jeff, and Valerie also used the Recalling Sums scheme.

But they all used only the Recalling Sums By Guessing scheme.

That is most of their recalls were made within two se'conds

after being presented with a problem; In addition none of their

explanations for recalled responses included the use of the

doubles fact nor the addition fact to a decade; They usually

explained mental additions by counting on; For example, Cullen

immediately recalled "2" as the answer to "5 + = 7 ", but

explaining her solution, she said, "I counted in my mind,

5-6i7"i It was possible Cullen knew that "5 + 2" is "7" but her

explanation was consistent with her dominant scheme, Counting

On, for solving addition.

Paris and Shani also used only the Recalling Sums By

Guessing scheme but they gave incorrect responses. However,

Paris and Shani gave some correct recalls which were clearly

(from later explanations.) the results of mental adding of

re-presented counting acts; Monica and Hendry also gave only

incorrect guegses when they used the Recalling Sums scheme;

We infer that children who had constructed the more

sophisticated counting unit types, also constructed the higher

level adding schemes. Thus Hendry,. the counter of perceptual

unit items used only the lowest scheme, Counting All correctly.

Monica, the counter of motor unit items was able to use in
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addition to the Counting All scheme; Separating scheme to solve

a missing-addend taski The counter of verbal unit items used

the next higher scheme; Counting From 1; Cullen, Jeff, Parisi

and Valerie, the counters of abstract unit items used the

second highest level scheme-, Counting On and also most of them

correctly employed the Recalling Sums schemei ThiS is

consistent with the finding by Carpenter (1983b) "that children

initially solve (addition) problems with a Counting All

strategy a d,that this strategy gradually gives way to Counting

On and the use of number facts (Recalling Sums)" (p. 23) The

findings in this study are also consistent with Houlihan and

Ginsburg's 1981), that second graders use counting on

procedures more than first graders. But Cullen and Valerie who

were first graders used more advanced schemes than Monica a

second grader. Also some of the older children have not

constructed the most advanced schemes: For example, Monica was

of the same age as Jeff but she used lower level schemes than

Jeff and solved only a few more problems than Hendry, who was

18 months younger. Another significant finding was that Cullen,

although of the same age as Hendry, used higher level schemes

and solved nearly as many problems as did Jeff, who was 18

months older. Also, John who was younger than both Jeff an

Monica used the highest level schemes, and solved nearly all

problems by r calling number .facrsi Another significant

observation was that John, Jeff, and Monica were from the same

second -grade classroom, just as Cullen and Hendry belonged to

the same first-grade classroomi



Adding Schemes and Problem Types

Table 10 shows that the children who used the most

advanced adding schemes also solved all the three types of

addition.probiemsi direct addition and missing-addends (first

or second). The problems solved also invol_ved larger addends;

Insert Table 10 about he!:e

some between:10 and 20 and others greater tha;. 20; Each child

usually used his or her most advanced scheme solve problems

involving smaller addends and the least advanced scheme

,(identified for that child) to solve problems with larger

addends. This relation between schemes and problems was

observed also within the specific schemes of the same

representation. For example; Jeff used the Counting On-Using

Abstract Unit Items scheme to solve problems with both addends

less than 10 but used the Counting On-Using Motor Unit Items

scheme to solve those with one addend greater than 20. ThiS

indicated that a child was more likely to use the most

efficient scheme to solve a problem if she was capable of

employing that scheme with confidence (minimum error). This

finding compares favorably with the hypotheses of Briars and

Larkin (1982) that when alternative strategies are available a

child will respond with the strategy that.results in the fewest

counting procedures; But this hypothesis should be viewed as

indicating the child's awareness of increased error in

counting with larger addends. (cf. Shani's above remark that

she started with 8 because "that is the hard one").
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Tkiere was a noticeable difference between the missing-

addend problems solved by the children who used the Counting On

and the Recalling SUMS schemes correctly and those who did not;

The former solved many missing addend problems including those

with addends greater than 20 or between 10 and 20. On the other

hand; the children who used the Counting From I and the

Counting All schemes correctly, solved only a couple of

missing-addend problems and none with addends greater than 10.

The problems_ for the latter children had to be repeated a

number of times and presented in stages to emphasize the

actions involved before the children succeeded to tblVe the

:problems; Steffe et al; (1983) made similar ObSerVations about

the performance of counters of perceptual; motor, and. verbal

unit items when presented with missing-addend prob_ems. The

diffibulty experienced by the counters of sensory-motor items

might be partly due to their intention to establish one

collection when solving tasks; Thus they do not decide before

Counting to keep track of their counting acts beyond the first

(given) addend.Their success generally depends en the

interviewer intervening; after the child has established a

collection for the giVen addend; and repeating the remaining

part of the problem.



iLlotinci_Scheme_a

Subtraction is the inverse of addition, and therefore, it is

an operation that can be performed mentally (internalized action)

or executed materially as an observabIcl action scheme; The

subtracting schemes that have been identified and which involved

counting, that is, Separatingi.Adding All, Trial and Error

Separating, Counting Up, and Counting Down schemes reflect

observable, materially executed action schemes. On the other

hand, the Recalling Number Facts and the Counting Up-Using

Abstract Unit Items schemes identified reflect internaliZed

actions for subtracting.

qa

L-g_pLinq. This was the lowest level of the representations of

children's subtraction concepts identified in the study. This

schemecan be compared to Carpenter (1983b), and Carpenter and

-Moser's (1982) Separating From strategy. This was the only scheme

that Hendry succeeded to construct, with guidance from the

interviewer. His initial scheme for subtfacting was to guess an

answer and explain by counting fingers equal to that number; For

example, to solve "5 2 ", Hendry said, "4" and explained by

sequentially extending four fingers while uttering "Ii2i3i4".

Five other children, Cullen, Monica, Parisi Shani and

Valerie also used the Separating scheme (see Table II). Monica,

Shani and Valerie used only this scheme to solve direct

subtraction problems (e.g. 9 6 = ). This finding was

significant in the case of Valerie, who was a counter of abstract

unit items.
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Adding All. This scheme was identified as the next higher level

after the Separating scheme. It was applicable only for solving

missing-minuend problems. Monica was the only counter of

sensory-motor items to use this scheme, but this was only after

she had been guided by the interviewer to solve similar problems

by, seeing the subtrahend and the difference (parts) as contained

in the missing-minuend (whole); Cullen and Paris were the only

counters of abstract unit items to use this scheme;

'rip and Error Separating; This scheme was identified as a

higher level representation than the Separating and Adding All

schemeS. The scheme was used by Cullen and Jeff, both counters of

abstract unit items. Even though the scheme appeared simple (from

the adult's view), the child who used it indicated some awareness

Of the subtrahend and the difference as parts of the minuend

(whole). For example, to solve "( 5 =.4)" with this scheme,

Jeff's intention was to construct a collection of eight items,

separate five items (the subtrahend) and check if the remaining

items will be four (the given difference). Thus when hiS fitSt

constructed collection of eight items failed "lo leave the

expected four items, Jeff added 1 item, formed a new collection,

and repeated the process.

Counting UP This scheme was used on more occasions than the

Counting Down scheme. Only the counters of abstract unit items

used the scheme. Tnis finding was consistent witn the failure of

the counters of sensory-motor items to use the Counting On scheme

to solve addition problems; This scheme wasi therefore,
;

identified as higher than the Trial and Error Separating, Adding

All, and Separating schemes; The Counting Up-Using. Perceptual
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Unit Items scheme can be compared to Carpenter and Moser's (1982).

Adding On, with concrete objects strategy; The fatter's Counting

Up From Given strategy can be compared to the Counting Up-Using

Verbal or Motor Unit Items scheme identified in the study.

Counting DO-Mn'
.

We identified the Counting Down scheme at a higher

level than the Counting U0 scheme. The support for out hypothesis

is, first, Valerie used the Counting Up scheme to solve a variety

of problems (see Tables 12 and 13) , but she never used the

Counting Down scheme. Second, Cullen used the Counting Down

scheme on only one occasion to solve "30 6". Third, none of the

counters of sensory-motor items was able to count backward, even

With perceptual items, to solve a task. This finding was

consistent with that by Steffe et al. (1983) The latter' explained

the inability of counters of sensory-motor items to count backward

as follows:

The .conceptual requirements for se 'orating items
from a collection by coon Lille Lo..r%.!ard include the
understanding that a number word that refers to a
parti ular item of a collection also refers to those
items yet to be counted (p. 102);

The conceptual requirement for the child to use the Counting Down

scheme using motor or verbal unit items, includes the ability to

use reversibility of counting. fn other words, the child must be

aware that counting backward from, say 7 to 1 will involve the

same counting number words as when counting forward from 1 to 7.

Carpenter and Moser (1982) found that about half of the

first-graders in their study could not count backward a given

number of steps, This finding supports the hypothesis that

first-graders are likely to experience difficulty in using

reversibility .of counting. Our support for this hypothesis was
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provided by Cullen and Valerie, both first-graders, and the only

counters of abstrabstract unit items SO'j hardly used the Counting Down

scheme; besides John who used even higher level schemes. Carpenter

and Moser (1982) also found that the Counting Down scheme was

difficult for children to use.

Recalling Number Facts

We identified the Recalling NuMber Facts scheme as the

hig,est level of the representation of subtraction. Hendry,

Monica, and Shanii counters of sensory-motor items, failed to use

any recall of number facts to solve subtraction problems. Their

guesses were incor ect and were followed by more guesses. Paris,

Valerie, Cullen, and Jeff used correctly at least two of the five

Recalling Number Facts schemes (see Table 11); The latter three

used the Recalling Addition Fact and Recalling Subtraction Fact

Insert Table 11 about here

schemes, in additiion to the Recalling Result By Guessing scheme;

These children succeeded to use only the Recalling Sum By Guessing

to solve addition problems; But their recall of facts were no

b ._ter for subtracting than for adding. This was not surprisin

since the Recalling Addition an:'; Subtraction Fact schemes were

indirect recall of number facts; For example, when Jef.f solvedd

= 4" by recalling "5 and A makes 9"i he had to re-call his

own number fact and relate it to the problem.

John used all the five Recalling Number Facts schemes. HO

also did not use any scheme that involved counting. Subtraction

It9



was completely an internalized activity for Johni just as it was

for addition;

The ability to use the.RecalIing Addition Fact to solve

subtraction problems indicated that the child raiied subtraction

as the.inversion of addition; Howeveri with the exception of Johni

the other four counters of abstract unit items did not use the

Recalling Addition Fact LO solve direct subtractl:on prctiems (e;g;

18 = 7 = ), Cullen and Jeff used the schene to so-A.,;e missing-

subtrahend problems, while Culleni Parisi and VA:terie used the

scheme to solve comparison-more problems (e.g; uow many more

the child's input than 3, the interviewer's input) (see Table

5(a)), Only Jeff used the FIcheme to solve equalizing-"add problems

(e.g. how many must the machine add to 5 to make 8), Als0 only

Wac.rie and John used the Recalling Subtraction Fact scheme;

infer that direct subtraction problems trigger mainly counting in

the four.counters of abstract unit items; excluding John. In facto

as mentioned earlier, Valerie used only the Separating scheme to

solve direct subtraction problems.

Steffe et al; (1983) have pointed out that a child has to be

able to partition a number (minuend) !.nto parts (subtrahend and

difference); make a reversal of the parts if necessary, anc

coordinate this with reversibility of counting before realizing

that subtraction is the inverse of addition. The subtraction

problems Steffe et al; used to make the above inference were

presented immediately after the related addition problems; For

exampIeo "19 12 = '1_ was presented to Christopher immediately

following "12 + 7= ". (see p. 108); We did not present related

addition and subtraction problems immediately following one
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another; Thus the children had no recent counting activity to

re-present to themselves and reverse to make an inversion to solve

direct subtraction problems. ,They might have done so if

subtraction and addition had bcen ,f.ompletely internaliZeJ, as it

was for John. Because they could then re-present and solve

mentall: the related addition problems and check to see if the sum

was equal fc the minuend. For example, to solve "24 - 12", Joh'n

recalled ti)( addition fact "12 + 12 = 24 ", so he answered, "12".

But John first tried "14 + 12" and realized that "14" could not be

the answer, because the latter sum was 26 and not 24. The other

four counters of abstract unit items would need to perform

counting activities to find "14 + 12" and "12 + 12" before they

could use their knowledge of inversion to answer the original

problem, "24 12". But there was no need for these four children

to perfom two counting activities; when they could perform one

counting .activity to c tain the same result. We infer that these

Cour counters of abstract unit items did not face the same

situation with the other subtraction problems; hence their success

in using the Recalling Addition Fact scheme; Our hypothesis is

consistent with the inability of the counters of sensorymotor

items to use the Recalling Addition Fact scheme to solve even the

non-direct subtraction problems; Because the latter lacked the

ability to use the Recalling Sum by Guessing scheme correctly to

solve addition problems.



EllbtrAL_Ling Schemes and Problem Types

Hendry, Monica, and Shani, who were counters of perceptual,

motor, and verbal unit items - respectively; used only the

Separating scheme to solve all direct subtraction problems;

Hendry-used only blocks to solve all his problems, which were also

only direct subtractio He; initially, used no correct scheme

for subtracting unti, 17,1e interviewer guided him to separate a

collection of items representing the smaller number (subtrahend)

from the collection of items representing the larger number

(minuend) to solve some problems; twu of the problems

presented to Hendry involved numer&ls on card as inputs, the rest

wete presented with blocks in sandwich bags as inputs. Hendry

could not use his fingers to solve any problems in which the

minued was greater than five.

Monica used the Separating scheme to solve also

missing-subt ihend and equalizing pr LleMs. She succeeded to use

the Adding All scheme to solve missing-minuend problems only after

some initial guidance from the interviewer. But she showed no

understanding of the comparison-more problem, "how many more is

five tha7, three"':' She said, "five is lesser than three", and

failed to solve the problem, despite the fact that she was made to

look at her five extended fingers and three extended fingers of

the interviewer. She, however, understood and solved

equalizing-take away and equalizing-add problems involving numbers

less than 10 (see Tables 12 and 13)

Insert Tables 12 and 13
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Shani used the Separating scheme to solve also the

missing-subtrahend and missing-minuend problems. She used her

fingers more than blocks to represent numbers in the problems.

Unfortunately her tape while solving comparison and equalizing

problems could not be used due to malfunctioning of the camera.

She also missed school on two days make up days.

We infeL that the counters of sensory motor items used only

one scheme, Separating, to solve all types of subtraction

problems; The use of the Adding All scheme by Monica was

triggered, whe :Ale was guided to see that the subtrahend and

difference combing to make the minuend. But this scheme is

consistent with Le scheme fu: adding; fiat is, Counting All.

There was no silv;4e ielacionship t,tween the schemes and

problem types for the cou.L.: ct unit items; However,

individual children tended to use particular schemes for some

problem types; For example, Valerie used only the Separating

Scheme and calling Result By Guessing schemes to solve all

'direct subtraction problems; But these children tended to use the

higher level schemes when the possiblity of error was minimal,

that iS, the difference was less than 10. For example, John used

the Recalling Addition Fact scheme to solve "9 4', but

used the Trial and Error addition to solve "24 - 12" and "48

24". Further support for our hypothesis was given by both Jef: and

Paris who failed to use a higher level scheme to solve problems

wit}' larger differences. For example, Jeff solved correctly "13

= 9" by using the CoUnting Down To- Using Verbal Unit Items

scheme, but failed to solve the very next problem "34 =.20"

with the same scheme; Similarly, Cullen and Valerie used the
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Recalling Addition and Subtraction Fact schemes to solve

missing-subtrahend probleMs when the minuend was less than i but

they used the Separating scheme for larger minuends;

Culleni. Jeff; Parisi and Valerie initially found the

missing-minuend problems difficulti so they used lower level

schemesi but later used higher' level schemes; For example; Jeff;

initially; used the Trial and Error Separating scheme to solve "

5 = 4"i but later; he was able to solve " = 11" by

using the Counting Up-Using Verbal Unit Items scheme;

All the five counters of abstract unit items had no

difficulty in understanding and solving comparison and equalizing

problems; The children's schemes for solving these problemS were

consistent with their schemes for adding and subtracting; For

example, Valerie used the Counting Up and Recalling Addition Fact

to solve comparison-more and equalizing-add problems; but she used

. the Separating scheme to solve the equalizing-take away problems.

No child used the Counting Down scheme to solve comparison

'problems. Jeff's use of the Counting Down scheme to solve

'equalizing-take away problems was consistent with his use of the

scheme for subtracting.
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Table 1

Addition problems presented with the function machine

. First Addend

2

4

3

5#

8

3

5*

4

4

10

6*

4

13

23

30

34

23

45

16

Input Numeral Output Numeral

Second Addend Surn

2.

5

3#

6*

9

10

4

8*

7

15

10

13

30

16

45

* Objects in a bag # Pictures on a card
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Table 2

Missing-Addend problems presented with the function machine

Inbot Numeral Output Numeral

FirSt Addend Second Addend

2

5

5

8

10

13

15

30

10

34

Objects in a bag

78

9

10

10

Sum

6*

7

7

8

11

14

25

31

44

44

44

13

15

24

44

81



Subtraction Problems Presented ',nth the Function Machine

Input Numeral

Minuend

o

7

8

9

9

9

15

14

IS

18

30

35

OutpUt Numeral

Subtrahend Difference

7

6

7

11

l2

o

24

Legend: - child to figure out
x blocks in sandwich bags
* pictures of animals on cards
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r 1'0111 (.111,/, Presented
tits i'0 11C 1011 i tic

()tit- t I' 1

i I fercince

70-

5

!

4)c

I1
I. 12
1 24

ild to t i re stilt
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k1111e 5(a)

Comparison Lrc Problems presented with the
Function Machine

Input Numera 1_

-C,11 i Id' s lute ry i ewer'

1

11

18

12

25

:5

1,1

13

Output Numeral

Tab, 7,1b)

Comparison Less P-
Funct

inP10: :1107te.7rJa

hild's Interviewer's

.ms Presented witi, the
'-inc'

11

1.5

18

IS 11

I 13

1) 25

L

Leond: - Child to fi.gure t

81
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1 (iwi 1 i 11-!!-. Add 1'i old ems rryst_litcd is i th L-he FtEicti.
1.1;icli

I tiptit 1

l;liilii'ti Int( r '

)

( 1 Hutt. Milner-al

:! 1 i 1!!;i1--.!(2 Away Pr.;1i1cms Presented with h tho
1:tmc t iOtt Mich i

I !Hint .11111 1-11 Ott t t Numeral

i 1(1 ' t evicer .-:

9

I t 0 11 ont
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Table 7

ChilUron's Description of Audition hy a Punction M,,tchine

Name of Child

Jehl, Jeff

CL1len

Valerie, Paris

Monlo,71,.3hani

.ndry

4-

Desciiption of Addition

,Add

Adding

Put .., together to make

Take away ... put ther: on here

Make more numbers



Table B

Children's Desciiption of Subtraction by a Function Machine

NaL4:. of Child
- _ _

John

Cullen, Jeff

Paris; Valerie

Shani

NOnica

Hendry

Description of Subtraction

Subtract

Take away

Take away

Changed it from 6 to 4

It conk (remove) two -way

less

97



Table 9. Childr'En' Adding Scheies

NAM':,' OF CHILD

11 ing

'111115

Using Place-. Value

TO A Decade

Using Doubles

John

/

.1444.

Je:f.__Cullen Valerie Paris Shni Monica Hendfl

Guessing

Addinc,, On By Tens And Ones

Using Abstract 11/1

unh7ib Using Vabzd u/i

iii tor u/i

Using Perceptual U/i

U int! Verbal d'i

Couh:In
11/1

Fr'ot I

PerceEtual u/i

tiarated
Lcut.'

IOnS

,n (ibined

Collections 4-

unit items

H :hild



Pecalling'L

Tulle 10, I! !On Pi'Ohi

.kirecr , on

P a C

Using Place Value Jo

To Decade .10

USdnii DObb16

hi Cuosing Jo C

Adding On "lens And Ones

lking Abstract u/i C V Je

;ounting
Verbal u/i C. V Jo P

Using Motor u/i 1. V Jo P

Porce ptuai u/i

lissing- Addend

+ U

on

Countin

Fru 1

4lIsing Perceptual u/i

I)tiin 'erbal

Using 1lotur u/:

Jo Jo Jo J e C

Jo

JO

P S

Jo V

*

_L___ _V"

P

In Separated

Louring Collections

All In Joined

collections

Separating

P

S

:fiend: C-Cullen 0-Hendry Jo-Jeff Jo-John

M=MbniCa P =Paris SiShani VValerio

u/i 0. i t items

* one aduend is between 10 and 20

X ono addend is greatcr than 21)
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SCHDIE

Table 11, Childrei, Subtracting Schemes

'Amo uf Child

John Jeff

Facts

Nil r Fact bv Thal

Subtraction Fact

Ac'ditioit

t i ng

Count

iig
Wown

qdtbt dii

lo

1

iLiincj_PlAaptual_11/i

i . \Tnhal
ftoumni7

D "I 7

1 P !lotor j1

With

till

Usig Abs'ilact 11/i.
.

Using Verbal

Using :\lotoru/i

Using Perceptual u/i

H Ii 1, U/ i

Trial and cu r Separating

AdMig All

5

Hendr:

7

Separating

/

Legend: u/i unit items

sehme used by child

Jr()
8 7

/

93



SUE

Recalling

LOW:

Tri

HsiL.

''10t0

Table Children's Schemes and Subtractibh Pibblems

, .

Direct Sul,traction

a b =

Missing-Subtrahend

a = c

Nissing4lintiend

b ,, t

ivied 17act, Jb i

ler Fact By

1 And Error Jo

:r_actian_
,7

, Jo

t i o n F a c t Jo Jo ,

lit_ Bv GUesSiu Jo Je P

ig Verbal U/i J,,,

.

Actor. u/i
c.<

+

Je P .

r.' Perceptual ii/i

*

P

al u/i

.;,k

J_e

.

(Ttual -uti- _

_ _ _ _ ...

:11c r

Abstract iili

l'i,Lrb a 1_ u!;
.le

Motof u"

U /i

,-le

e C

C P 1

CPSM S

P.11:0ij il-HeLdy 1,-Jeff Jo -John

S-Snan:

u/i unit heMS

' minuend is ntgeen 10 and 20

k minuend is greater thu 2('
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()tint

I
Srb-eMeS, and Comparison nnd Egunli:ing Problems

i

Lftt
I

NOMhet Fn.ct by

Trial and EtrOt

LCMprlson

more

Compnrkon

less add take: ais'ay

30

SOtrnction

AdditiOn fact V ft_f

)).kcsult P. llurssifP Jo V JO H

-Verbal

Motor u/i

!king P6i.atual J/i

Abstract u/i

e

'.,rotor u/i

Ilslni

Had:

Ir

111011 .H-Jeff .In-John

0111H P-P-aris Vnlcrie

;Jrgcr glen numher heth,:en 11C1 2P

largtsv is greatc.,r than 2v

P P M

(q 97.



EnnWledge

Student

Figure Subordination of Learning to Teaching

Figure 2.

Student

Subordination of leaching to Learning

98



Counter of
erceptual

items
Figural
items

Motoric
items

Verbal
items

Abstract
items

Abstract u/items* / /

Verbal u/items / / /
Motor u/items / / x

Figural u/items x x

Per.1'9ptua1 u/items x x

*u /items: unit items

Legend: o most advanced items

more primitive items

undifferentiated items

Figure 3 The development of counting



IN IN

OUT

--- Partition
(holds input numerals)

Figure 4(a) Front view of a Function Machine with
two Input Holes

Figure 4 (b)

IN

Partition
(holds input numeral)

OUT

Front view of a Function Machine with
one Input Hole
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Input*

Output* "

IN

rs"---=-- OUT

IN
"3"

Partition
(holds input cards)

* card with pictures of animals

Figure S(a). Addition by a Functior Machine

--d Input* "2"
Input* "6"_:;n4

Output* " OUT

IN

Partition
(holds input cards)

* card with pictures of animals

Figure 5(b). Subtraction by a Function Machine
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Begin Stop Resume Stop

utter
aumber
words one tt,o first One two second
fo rwa rd addend addend

perceptual.
items

next-- next--
mr;,---14

next next
,'"--"A

o o

constructed
collection

first
Addend

Resume

utter
number one two
words
forward

I nex t

perceptual o o -

unit
items

cons t ruct eel

.co 1 1 cc i on

second
addend

End

sum

110-Xt

0 0

Sum

Figure 0(a) Representation Al (Counting All In Joined Collections)
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Rug

utter
/numher one two

words
forward

perceptual. 3 next
iteMS

Stop Re!: HMO

J
First one tA6'0

addend

next -next--
_;,-----4'Y ?-----a_
0 0 0 0

constructed f i rst

collectior

utter
numher
wo rds

fOrward

perceptual
items

constructed
collection

Stop

i
second
addend

ii-ext

--__0,.....y 0

second
addend addend

sIgnore Lnd-

separation

OLIC two first 1 sum

/

addend
1

next next next nexti
..----9 e---Thi Mil
o o- 0 o o

"-0 ,---
o 0

SUM

next

Fiy,ure 6(h) Representation Al (Counting All In SeparatcdC01Iections)
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Make
Separation

number. one

to rwa r !

verbal,
.motor;:
perceptual
items

0

to

next

first
idebn1-1

next

-
e----)1
o

t

j

\-$
0

next

COOStrUited:
Adleetion

Orst_
addend

next

0

Id

Sum

next

0o 0

]

second
addend

Figure Representation A2 (Counting From 1)
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"atter"
number

forward

abstract;
verhni;
motor;
perceptual
items

constructed
number or :

collection

Begin

First_
addend

next

Make
Separation

next

0 0

L d

Sum

next

0

Second
addend

Sum

Figure S. Representation A5 Counting On).
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Figure J. Representation A4 (Recalling Sums)

)8

X06

The Sum

is the

answer



rc (1) ii;t I

t

cum:: t t'uf't
1 1 t l on

one

IteX n_e_x t

0

Resume

iithcr

iminhe

rd s one t lc°

lol, rd

FCCI`t II:11 next_

i t

rce

t &n!--;

t

col I ect i

ilex t

in i 'mend

`,T

Ft 1) t raliencl;

it i fference
1

make
s e pa ril t- i

0 0

t

iOil

S11.11t rille110/ (II f 1 Crellt.'

It es

011e twO

next 4,
1

C)

0. Representat.ton Si (Separating)

9 9
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Begin Stop Resume Slop

utter
number
wOrds one two Subtrahend One tiro JiffCrence
forward

perceptual
items

constructed
collection Subtrahend

next_

0 0

next

utter
number; oie wo minuend

next next next next

word
forward

perceptual; --o 0 o 0 - o

items

next

Re sxime

/

next next

0 0 0 0

ignore
separation

difference

lind

constructed.
collection

minuend

Figure 11. RepresenLation S2 (Adding All)



carry out -the
separatlng scheme
with a "guessed"
suhtrahend or
difference

Is your answer
equal to the
given difference
or subtrahend?

No

guess a new subtrahend
or difference

Yes

Your guessed
subtrahend or
difference is
the answer.

Figure I 2; Representation 53 (Trial and Error Separating)



utter
number
wrds
Forward

abstract,
verbal;
motor;
perceptual
items

constructed
number or
collection

Begin

smaller
number

next

Make
Separation

next

Stop

larger
number

next

o -oiL;

difference

Larger number

Figure 13: Representation S4 (Counting Up)



utter
number
word
ba.cktvar&.

verbal,
motor,
perceptual
items

onstructed
number or
collection

Begin

miLuend

Mike
Separation

before. before

Stop

difference/
subtrahend

before -_

0

Figure 14. Representation S5 (Counting flown)

subtrahend/
difference



No

Recall

a number

fact

1

Are two numbers
equal to the
given numbers?

Do you know how
to make them
_equal?

Yes
3

Increase or
decrease the
necessary numbers(s)

Yes

The third
number is the
answer

Note 15. Rept&;ehtation S6 (Recalling Number Facts)
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